Notice
Recent Comments
- 안녕하세여 글 잘봤습니다. 저 질문이 있어서⋯
- 엌ㅋㅋ 최고의 댓글이네요. 그렇게 말씀해주⋯
- 진짜 너무 잘 설명해주셔서 울컥하는 바람에⋯
- 이미지를 hsv로 변환하고 다각형 도형 챕터에⋯
- 고맙습니다~!
- 좋은 글 잘 보고 갑니다. 굿굿
- 오 직접 번역까지 하신다니.. 번역하시면 꼭⋯
- 번역본은 없나봐요 찾아봤는데! 나중에 시간⋯
- 도움이 많이 되셨다니 다행이네요 ㅎㅎ 구매⋯
- 안녕하세요. 관련 서적 중 가장 도움이 많이⋯
- 구독까지 해주셔서 감사합니다 !! ^^
- 저도 최근에 톨스토이의 자전소설인 [소년시⋯
- 제 책을 사주셨다니 감사합니다 :) 말씀하신⋯
- 글쎄요. 저는 잘 모르겠습니다 ㅜㅜ
- ^^
목록랜덤 포레스트 (1)
귀퉁이 서재

이전 포스트에서 결정 트리(Decision Tree)에 대해 알아봤습니다. 랜덤 포레스트를 배우기 위해서는 우선 결정 트리부터 알아야 합니다. 결정 트리에 대해 잘 모른다면 이전 포스트를 먼저 보고 오시기 바랍니다. (머신러닝 - 4. 결정 트리) 랜덤 포레스트의 개념은 쉽습니다. 랜덤 포레스트의 포레스트는 숲(Forest)입니다. 결정 트리는 트리는 나무(Tree)입니다. 나무가 모여 숲을 이룹니다. 즉, 결정 트리(Decision Tree)가 모여 랜덤 포레스트(Random Forest)를 구성합니다. 결정 트리 하나만으로도 머신러닝을 할 수 있습니다. 하지만 결정 트리의 단점은 훈련 데이터에 오버피팅이 되는 경향이 있다는 것입니다. 여러 개의 결정 트리를 통해 랜덤 포레스트를 만들면 오버피팅 되는 ..
머신러닝
2019. 7. 25. 23:32