Notice
Recent Comments
- 안녕하세여 글 잘봤습니다. 저 질문이 있어서⋯
- 엌ㅋㅋ 최고의 댓글이네요. 그렇게 말씀해주⋯
- 진짜 너무 잘 설명해주셔서 울컥하는 바람에⋯
- 이미지를 hsv로 변환하고 다각형 도형 챕터에⋯
- 고맙습니다~!
- 좋은 글 잘 보고 갑니다. 굿굿
- 오 직접 번역까지 하신다니.. 번역하시면 꼭⋯
- 번역본은 없나봐요 찾아봤는데! 나중에 시간⋯
- 도움이 많이 되셨다니 다행이네요 ㅎㅎ 구매⋯
- 안녕하세요. 관련 서적 중 가장 도움이 많이⋯
- 구독까지 해주셔서 감사합니다 !! ^^
- 저도 최근에 톨스토이의 자전소설인 [소년시⋯
- 제 책을 사주셨다니 감사합니다 :) 말씀하신⋯
- 글쎄요. 저는 잘 모르겠습니다 ㅜㅜ
- ^^
목록의사결정나무 (1)
귀퉁이 서재

결정 트리(Decision Tree, 의사결정트리, 의사결정나무라고도 함)는 분류(Classification)와 회귀(Regression) 모두 가능한 지도 학습 모델 중 하나입니다. 결정 트리는 스무고개 하듯이 예/아니오 질문을 이어가며 학습합니다. 매, 펭귄, 돌고래, 곰을 구분한다고 생각해봅시다. 매와 펭귄은 날개를 있고, 돌고래와 곰은 날개가 없습니다. '날개가 있나요?'라는 질문을 통해 매, 펭귄 / 돌고래, 곰을 나눌 수 있습니다. 매와 펭귄은 '날 수 있나요?'라는 질문으로 나눌 수 있고, 돌고래와 곰은 '지느러미가 있나요?'라는 질문으로 나눌 수 있습니다. 아래는 결정 트리를 도식화한 것입니다. 이렇게 특정 기준(질문)에 따라 데이터를 구분하는 모델을 결정 트리 모델이라고 합니다. 한번의 ..
머신러닝
2019. 7. 22. 23:23