Notice
Recent Comments
- 이런 감상평 댓글 너무 좋습니다. 다른 분들은 어떻게 생각하는지 알 수 있어서 마⋯
- 책을 읽긴 했지만 잘 머리 속에 정리 되지 않았던 흐름이 잘 정리되었습니다. 감사⋯
- 아이구 읽어주셔서 고맙습니다. 새해 복 많이 받으세요 😀
- 저도 최근에 이방인 제목만 알고 있다가, 한번 읽어보려고 구매했는데, 너무나 잘 ⋯
- 고맙습니다 :)
- 항상 잘 보고 있습니다 좋은 하루 되세요 :)
- 별 거 아닌 내용인데 이렇게 댓글 남겨주셔서 고맙습니다 :)
- 좋은 글에 대한 감사함을 댓글로 표현합니다. 자세한 설명글 감사합니다.
- OpenCV 버전 4부터는 findContours()가 값을 두 개만 리턴합니다.⋯
- 맨 앞에 im2는 빼야하는 듯 합니다.
- 혹시 im2, contour, hierarchy = cv2.findContour⋯
- 예, 이해하신 흐름이 맞습니다. 다만 '전체적인 분류 성능'을 어떻게 정의하냐에⋯
- 글 감사합니다. 궁금한 부분이, 프로세스가 다음 stump으로 넘어갈때, 샘플링⋯
- 👍
- 표로 정리해주셔서 이해가 한번에 잘 됐어요
목록Fast R-CNN (1)
귀퉁이 서재

본 글에서 주요 내용 위주로 Fast R-CNN 논문을 번역/정리했습니다. 글 중간에 로 부연 설명을 달아놓기도 했습니다. 틀린 내용이 있으면 피드백 부탁드립니다. 논문 제목: Fast R-CNN 저자: Ross Girshick 기관: Microsoft Research 개정 발표: 2015년 9월 (첫 발표: 2015년 4월) Abstract 본 논문에서는 '빠른 공간 기반 합성곱 신경망 모델(Fast Region-based Convolutional Network method, Fast R-CNN)'을 소개합니다. Fast R-CNN은 이전의 R-CNN이나 SPP-net과 비교해, 속도도 빠르고 성능도 좋습니다. Fast R-CNN은 PASCAL VOC 2012에서 R-CNN보다 VGG16 네트워크를 9..
논문 리뷰
2022. 3. 9. 20:20