Notice
Recent Comments
- 안녕하세여 글 잘봤습니다. 저 질문이 있어서⋯
- 엌ㅋㅋ 최고의 댓글이네요. 그렇게 말씀해주⋯
- 진짜 너무 잘 설명해주셔서 울컥하는 바람에⋯
- 이미지를 hsv로 변환하고 다각형 도형 챕터에⋯
- 고맙습니다~!
- 좋은 글 잘 보고 갑니다. 굿굿
- 오 직접 번역까지 하신다니.. 번역하시면 꼭⋯
- 번역본은 없나봐요 찾아봤는데! 나중에 시간⋯
- 도움이 많이 되셨다니 다행이네요 ㅎㅎ 구매⋯
- 안녕하세요. 관련 서적 중 가장 도움이 많이⋯
- 구독까지 해주셔서 감사합니다 !! ^^
- 저도 최근에 톨스토이의 자전소설인 [소년시⋯
- 제 책을 사주셨다니 감사합니다 :) 말씀하신⋯
- 글쎄요. 저는 잘 모르겠습니다 ㅜㅜ
- ^^
목록SVM sklearn (1)
귀퉁이 서재

sklearn을 활용하여 서포트 벡터 머신(SVM) 실습을 해보겠습니다. 코드 및 데이터는 제 깃헙에 모두 있습니다. 본 포스트의 내용은 OpenCV의 글을 정리한 것입니다. (Reference1) Linearly Separable Data without Noise 먼저 가장 단순한 케이스를 봅시다. Noise가 전혀 없어 아주 깔끔하게 선형 구분이 가능한 데이터입니다. 맨 왼쪽은 전체 데이터, 가운데는 Training Data, 오른쪽은 Test Data입니다. 전체 데이터를 80:20 비율로 Training Data, Test Data로 나눈 겁니다. Noise가 없고 딱 봐도 두 데이터를 선형(직선)으로 구분할 수 있습니다. SVM Classfier로 위 데이터를 구분하는 Decision Bound..
머신러닝
2019. 7. 18. 00:09