Notice
Recent Comments
- 이미지에서 관심영역을 선택후 그 이미지나⋯
- 네 ^^
- 제가 추천 시스템과 관련된 논문을 작성하고⋯
- 오타 발견해주셔서 고맙습니다. 수정했습니다 :)
- 안녕하세요. 좋은 글 감사합니다 :) 글 중에⋯
- 옙!
- 네~ ^^ 출처만 적어주시면 감사드리겠습니다!
- 안녕하세요 블로그 게시물 잘 보고있습니다.⋯
- 고맙습니다 ^^
- 덕분에 쉽게 이해가 되었습니다. 친절한 설명⋯
- keypoint.pt[0], keypoint.pt[1]이 각각 x, y⋯
- 안녕하세요, ORB알고리즘을 처음 공부하는⋯
- 읽어주셔서 고맙습니다 ~
- 정말 쉽고 흥미로운 이야기들입니다! 잘 읽고⋯
- 아하 그렇군요! ㅎㅎ 포스팅 정말 잘 읽고 갑⋯
목록compressed sparse row (1)
귀퉁이 서재

이번 장에선 희소 행렬에 대해 알아보겠습니다. 마찬가지로 파이썬 머신러닝 완벽 가이드 (권철민 저), 딥 러닝을 이용한 자연어 처리 입문(유원주 저)을 요약정리했습니다. 이전 장에서 배웠던 CountVectorizer, TfidfVectorizer를 이용해 피처 벡터화를 하면 상당히 많은 칼럼이 생깁니다. 모든 문서에 포함된 모든 고유 단어를 피처로 만들어주기 때문입니다. 모든 문서의 단어를 피처로 만들어주면 수만 개에서 수십만 개의 단어가 만들어집니다. 이렇게 대규모의 행렬이 생기더라도 각 문서에 포함된 단어의 수는 제한적이기 때문에 행렬의 대부분의 값은 0으로 채워집니다. 이렇듯 대부분 값이 0으로 채워진 행렬을 희소 행렬(Sparse Matrix)이라고 합니다. 아래는 희소 행렬의 예시입니다. 이와..
자연어 처리 (NLP)
2020. 2. 16. 11:51