본문 바로가기

귀퉁이 서재

검색하기
귀퉁이 서재
프로필사진 Baek Kyun Shin

  • 전체 글 보기 (259)
    • 데이터 분석 (33)
    • 머신러닝 (22)
    • 컴퓨터 비전 (14)
    • OpenCV (33)
    • 자연어 처리 (NLP) (14)
    • 논문 리뷰 (7)
    • 캐글 (Kaggle) (11)
    • 블로그 프로젝트 (17)
    • 토이(Toy) 프로젝트 (5)
    • 책과 사유 (100)
    • 회고 (3)
Guestbook
Notice
  • 소개(About)
Recent Comments
Recent Posts
Archives
Link
  • Github
관리 메뉴
  • 글쓰기
  • 방명록
  • RSS
  • 관리

목록그레디언트 부스트 알고리즘 (1)

귀퉁이 서재

머신러닝 - 15. 그레디언트 부스트(Gradient Boost)

앙상블 방법론에는 부스팅과 배깅이 있습니다. (머신러닝 - 11. 앙상블 학습 (Ensemble Learning): 배깅(Bagging)과 부스팅(Boosting)) 배깅의 대표적인 모델은 랜덤 포레스트가 있고, 부스팅의 대표적인 모델은 AdaBoost, Gradient Boost등이 있습니다. Gradient Boost의 변형 모델로는 XGBoost, LightGBM, CatBoost가 있습니다. XGBoost, LightGBM, CatBoost은 캐글에서 Top Ranker들이 많이 사용하고 있는 모델입니다. XGBoost, LightGBM, CatBoost에 대해서는 추후 알아보도록 하고, 이번 글에서는 Gradient Boost에 대해 알아보겠습니다. 본 글은 StatQuest의 Gradient ..

머신러닝 2019. 10. 23. 23:14
Prev 1 Next

Blog is powered by kakao / Designed by Tistory

티스토리툴바