본문 바로가기

귀퉁이 서재

검색하기
귀퉁이 서재
프로필사진 Baek Kyun Shin

  • 전체 글 보기 (259)
    • 데이터 분석 (33)
    • 머신러닝 (22)
    • 컴퓨터 비전 (14)
    • OpenCV (33)
    • 자연어 처리 (NLP) (14)
    • 논문 리뷰 (7)
    • 캐글 (Kaggle) (11)
    • 블로그 프로젝트 (17)
    • 토이(Toy) 프로젝트 (5)
    • 책과 사유 (100)
    • 회고 (3)
Guestbook
Notice
  • 소개(About)
Recent Comments
Recent Posts
Archives
Link
  • Github
관리 메뉴
  • 글쓰기
  • 방명록
  • RSS
  • 관리

목록다중공선성 (1)

귀퉁이 서재

DATA - 20. 다중공선성(Multicollinearity)과 VIF(Variance Inflation Factors)

이번 시간에는 다중공선성과 VIF에 대해 알아보겠습니다. 독립 변수 X는 종속 변수 Y 하고만 상관 관계가 있어야 하며, 독립 변수끼리 상관 관계가 있어서는 안 됩니다. 독립 변수간 상관 관계를 보이는 것을 다중공선성(Multicollinearity)이라고 합니다. 다중공선성이 있으면 부정확한 회귀 결과가 도출됩니다. (X와 Y의 상관 관계가 반대로 나온다던가 검정 결과가 다르게 나온다던가 말이죠.) 회귀 모델에 다중공선성이 있는지 파악하는 방법은 두 가지가 있습니다. 1. 산점도 그래프 (Scatter plot Matrix) 2. VIF (Variance Inflation Factors, 분산팽창요인) 산점도 그래프를 통해 독립 변수끼리 상관 관계가 있는지 파악하는 방법에 대해서는 아래 Python 코..

데이터 분석 2019. 5. 1. 13:03
Prev 1 Next

Blog is powered by kakao / Designed by Tistory

티스토리툴바