Notice
Recent Comments
- 흠.. 전체 코드를 보지 않고 말씀하신 내용만⋯
- 오타 발견해주셔서 고맙습니다. 수정했습니다 :)
- 그리고 [mov,mp4,m4a,3gp,3g2,mj2 @ 000001b7⋯
- colab과 vscode모두에서 돌려보았습니다. vsc⋯
- 안녕하세요. 좋은 글 감사합니다 :) 글 중에⋯
- 옙!
- 네~ ^^ 출처만 적어주시면 감사드리겠습니다!
- 안녕하세요 블로그 게시물 잘 보고있습니다.⋯
- 고맙습니다 ^^
- 덕분에 쉽게 이해가 되었습니다. 친절한 설명⋯
- 마지막 동영상을 재생하시면 초룩색 사각형이⋯
- 올려주신 글 보면서 열심히 공부하고 있습니⋯
- keypoint.pt[0], keypoint.pt[1]이 각각 x, y⋯
- 안녕하세요, ORB알고리즘을 처음 공부하는⋯
- 읽어주셔서 고맙습니다 ~
목록로지스틱 회귀 (1)
귀퉁이 서재

이번 챕터에서는 로지스틱 회귀에 대해 알아보겠습니다. 이전 챕터까지 배웠던 단순 선형 회귀, 다중 선형 회귀에서는 독립 변수가 양적 데이터 혹은 범주형 데이터이고, 종속 변수가 양적 데이터였습니다. 이번엔 종속 변수가 범주형 데이터일 때의 회귀 모델에 대해 알아보겠습니다. 종속 변수가 범주형 데이터이며 이진형(binary)일 때를 로지스틱 회귀라 합니다. 위키피디아 정의를 가져와 봤습니다. 로지스틱 회귀(logistic regression)는 D.R.Cox가 1958년에 제안한 확률 모델로서 독립 변수의 선형 결합을 이용하여 사건의 발생 가능성을 예측하는 데 사용되는 통계 기법이다. 로지스틱 회귀의 목적은 일반적인 회귀 분석의 목표와 동일하게 종속 변수와 독립 변수 간의 관계를 구체적인 함수로 나타내어 ..
데이터 분석
2019. 5. 6. 18:02