본문 바로가기

귀퉁이 서재

검색하기
귀퉁이 서재
프로필사진 Baek Kyun Shin

  • 전체 글 보기 (259)
    • 데이터 분석 (33)
    • 머신러닝 (22)
    • 컴퓨터 비전 (14)
    • OpenCV (33)
    • 자연어 처리 (NLP) (14)
    • 논문 리뷰 (7)
    • 캐글 (Kaggle) (11)
    • 블로그 프로젝트 (17)
    • 토이(Toy) 프로젝트 (5)
    • 책과 사유 (100)
    • 회고 (3)
Guestbook
Notice
  • 소개(About)
Recent Comments
Recent Posts
Archives
Link
  • Github
관리 메뉴
  • 글쓰기
  • 방명록
  • RSS
  • 관리

목록베이즈 정리 (1)

귀퉁이 서재

머신러닝 - 1. 나이브 베이즈 분류 (Naive Bayes Classification)

나이브 베이즈는 스팸 메일 필터, 텍스트 분류, 감정 분석, 추천 시스템 등에 광범위하게 활용되는 분류 기법입니다. 나이브 베이즈 분류에 대해서 배우기 위해서는 베이즈 정리를 먼저 알아야 합니다. 베이즈 정리를 모르신다면 DATA - 10. 베이즈 추정(Bayesian Estimation)을 먼저 보고 오시기 바랍니다. 머신러닝을 통해 어떤 동물의 사진이 있을 때 그 동물이 호랑이인지 고양이인지 얼룩말인지 등을 구분할 수 있습니다. 사전에 수많은 호랑이, 고양이, 얼룩말 사진에 대해 학습을 시킵니다. 다양한 자세, 표정, 생김새, 털의 색깔 등을 가진 호랑이, 고양이, 얼룩말에 대해 '이 사진은 호랑이고, 이 사진은 고양이야'라고 학습시키는 것입니다. 학습된 머신러닝 모델은 이제 호랑이, 고양이, 얼룩말..

머신러닝 2019. 7. 14. 13:54
Prev 1 Next

Blog is powered by kakao / Designed by Tistory

티스토리툴바