Notice
Recent Comments
- 이런 감상평 댓글 너무 좋습니다. 다른 분들은 어떻게 생각하는지 알 수 있어서 마⋯
- 책을 읽긴 했지만 잘 머리 속에 정리 되지 않았던 흐름이 잘 정리되었습니다. 감사⋯
- 아이구 읽어주셔서 고맙습니다. 새해 복 많이 받으세요 😀
- 저도 최근에 이방인 제목만 알고 있다가, 한번 읽어보려고 구매했는데, 너무나 잘 ⋯
- 고맙습니다 :)
- 항상 잘 보고 있습니다 좋은 하루 되세요 :)
- 별 거 아닌 내용인데 이렇게 댓글 남겨주셔서 고맙습니다 :)
- 좋은 글에 대한 감사함을 댓글로 표현합니다. 자세한 설명글 감사합니다.
- OpenCV 버전 4부터는 findContours()가 값을 두 개만 리턴합니다.⋯
- 맨 앞에 im2는 빼야하는 듯 합니다.
- 혹시 im2, contour, hierarchy = cv2.findContour⋯
- 예, 이해하신 흐름이 맞습니다. 다만 '전체적인 분류 성능'을 어떻게 정의하냐에⋯
- 글 감사합니다. 궁금한 부분이, 프로세스가 다음 stump으로 넘어갈때, 샘플링⋯
- 👍
- 표로 정리해주셔서 이해가 한번에 잘 됐어요
목록시퀀스투시퀀스 (1)
귀퉁이 서재

이번 글은 RNN(Recurrent Neural Network)에 대해 이미 알고 있다는 가정 하에 썼습니다. RNN에 대해 잘 모르신다면 RNN을 먼저 배워오시기를 추천드립니다. NLP 분야에서 seq2seq는 기계 번역, 문장 생성, 질의응답, 메일 자동 응답 등에 활용되는 모델입니다. 우선 기계 번역에 대해 알아보겠습니다. 예전의 기계 번역은 주로 규칙 기반(rule based)이었습니다. 문맥을 전체적으로 고려하지 않고 단어와 단어를 1:1로 번역하기 때문에 결과가 좋지 않았습니다. 극단적인 예이긴 하지만 아래와 같습니다. 성능이 좋지 않은 규칙 기반 번역: 나는 그곳에 갔다 -> I there went ?? '나는'을 I, '그곳에'를 there, '갔다'를 went로 단어 간 1:1 번역이기 ..
자연어 처리 (NLP)
2020. 6. 20. 21:04