Notice
Recent Comments
- 좋게 봐주셔서 감사합니다 ㅎㅎ
- filter2D말고 다른 메서드도 있나보죠? 저도⋯
- 책 읽어보고 싶었는데 읽기전에 사전 정보를⋯
- 안녕하세요! 잘 보고 갑니다!! 도움 많이 됐⋯
- 옙 감사합니다. 이해가 잘 되셨다니 다행이네요!
- 머신러닝 공부를 하다가 AdaBoost와 Gradient⋯
- 와 설명이 많이 부족했을 텐데, 끝까지 읽어⋯
- 특별한 이유가 있진 않고 빠르고 성능이 좋아⋯
- opencv 다 읽었습니다. 정말 유용한 정보 감⋯
- 혹시 검출기를 ORB를 쓰신 이유가 있나요?
- werooring@gmail.com로 연락주세요~ :)
- 제작 의뢰 문의 드려도 될까요? 010-5599-352⋯
- ADP 준비하고 계시는군요. 방문해주시고 댓글⋯
- ADP 자격증 실기를 준비중에 있는데 나이브⋯
- 아이고 너무나 감사합니다 ^^
목록주성분 분석 (1)
귀퉁이 서재

차원 축소와 PCA 차원 축소는 많은 feature로 구성된 다차원 데이터 세트의 차원을 축소해 새로운 차원의 데이터 세트를 생성하는 것입니다. 일반적으로 차원이 증가할수록, 즉 feature가 많아질수록 예측 신뢰도가 떨어지고, 과적합(overfitting)이 발생하고, 개별 feature간의 상관관계가 높을 가능성이 있습니다. PCA(주성분 분석, Principal Component Analysis)는 고차원의 데이터를 저차원의 데이터로 축소시키는 차원 축소 방법 중 하나입니다. (Reference1) 머신러닝을 할 때 훈련 데이터의 feature가 많은 경우가 있습니다. 하지만 모든 feature가 결과에 주요한 영향을 끼치는 것은 아닙니다. 가장 중요한 feature가 있을 것이고, 그다음 중요한..
머신러닝
2019. 8. 11. 13:15