Notice
Recent Comments
- 좋게 봐주셔서 감사합니다 ㅎㅎ
- filter2D말고 다른 메서드도 있나보죠? 저도⋯
- 책 읽어보고 싶었는데 읽기전에 사전 정보를⋯
- 안녕하세요! 잘 보고 갑니다!! 도움 많이 됐⋯
- 옙 감사합니다. 이해가 잘 되셨다니 다행이네요!
- 머신러닝 공부를 하다가 AdaBoost와 Gradient⋯
- 와 설명이 많이 부족했을 텐데, 끝까지 읽어⋯
- 특별한 이유가 있진 않고 빠르고 성능이 좋아⋯
- opencv 다 읽었습니다. 정말 유용한 정보 감⋯
- 혹시 검출기를 ORB를 쓰신 이유가 있나요?
- werooring@gmail.com로 연락주세요~ :)
- 제작 의뢰 문의 드려도 될까요? 010-5599-352⋯
- ADP 준비하고 계시는군요. 방문해주시고 댓글⋯
- ADP 자격증 실기를 준비중에 있는데 나이브⋯
- 아이고 너무나 감사합니다 ^^
목록skip-gram (1)
귀퉁이 서재

Word2Vec은 워드 임베딩(Word Embedding) 방법론 중 하나입니다. Word2Vec을 설명하기 앞서 아래 예시를 한번 보겠습니다. 한국 - 서울 + 파리 = 프랑스 어머니 - 아버지 + 여자 = 남자 아버지 + 여자 = 어머니 직관적으로 이해하시는 분들도 있을 겁니다. 첫번째 예시를 보면 우선 한국이라는 단어에서 수도에 해당하는 서울을 빼줍니다. 한국에서 서울이라는 특성을 뺐으니 나라에 해당하는 껍데기 의미만 남아있을 겁니다. 거기에 파리를 더해주면 프랑스가 됩니다. 나라에 해당하는 껍데기에 파리라는 프랑스 수도를 더해주니 그 단어는 프랑스가 되는 것입니다. 마지막 예에서는 아버지에 여자라는 요소를 더해주면 어머니가 된다는 뜻입니다. Word2Vec을 활용하면 위와 같이 단어 간 관계를 파..
자연어 처리 (NLP)
2020. 6. 16. 22:41