본문 바로가기

귀퉁이 서재

검색하기
귀퉁이 서재
프로필사진 Baek Kyun Shin

  • 전체 글 보기 (259)
    • 데이터 분석 (33)
    • 머신러닝 (22)
    • 컴퓨터 비전 (14)
    • OpenCV (33)
    • 자연어 처리 (NLP) (14)
    • 논문 리뷰 (7)
    • 캐글 (Kaggle) (11)
    • 블로그 프로젝트 (17)
    • 토이(Toy) 프로젝트 (5)
    • 책과 사유 (100)
    • 회고 (3)
Guestbook
Notice
  • 소개(About)
Recent Comments
Recent Posts
Archives
Link
  • Github
관리 메뉴
  • 글쓰기
  • 방명록
  • RSS
  • 관리

목록Robustness (1)

귀퉁이 서재

머신러닝 - 2. 서포트 벡터 머신 (SVM) 개념

서포트 벡터 머신(SVM, Support Vector Machine)이란 주어진 데이터가 어느 카테고리에 속할지 판단하는 이진 선형 분류 모델입니다. (Reference1) 본 포스트는 Udacity의 SVM 챕터를 정리한 것입니다. 아래 그림을 봅시다. 빨간 X와 파란 O를 구분하는 3개의 선을 나타낸 것입니다. 3개 선 중 어떤 선이 가장 적절하게 두 데이터를 구분한 선일까요? 표시가 된 가운데 선이 가장 적절합니다. 왜 양 옆의 선보다 가운데 선이 두 데이터를 더 적절히 구분하는 선일까요? Margin의 최대화 정답은 가운데 선이 Margin을 최대화하기 때문입니다. Margin이란 선과 가장 가까운 양 옆 데이터와의 거리입니다. 선과 가장 가까운 포인트를 서포트 벡터(Support vector)라..

머신러닝 2019. 7. 15. 19:34
Prev 1 Next

Blog is powered by kakao / Designed by Tistory

티스토리툴바