본문 바로가기

귀퉁이 서재

검색하기
귀퉁이 서재
프로필사진 Baek Kyun Shin

  • 전체 글 보기 (259)
    • 데이터 분석 (33)
    • 머신러닝 (22)
    • 컴퓨터 비전 (14)
    • OpenCV (33)
    • 자연어 처리 (NLP) (14)
    • 논문 리뷰 (7)
    • 캐글 (Kaggle) (11)
    • 블로그 프로젝트 (17)
    • 토이(Toy) 프로젝트 (5)
    • 책과 사유 (100)
    • 회고 (3)
Guestbook
Notice
  • 소개(About)
Recent Comments
Recent Posts
Archives
Link
  • Github
관리 메뉴
  • 글쓰기
  • 방명록
  • RSS
  • 관리

목록SVM scikit-learn (1)

귀퉁이 서재

머신러닝 - 3. 서포트 벡터 머신 (SVM) 실습

sklearn을 활용하여 서포트 벡터 머신(SVM) 실습을 해보겠습니다. 코드 및 데이터는 제 깃헙에 모두 있습니다. 본 포스트의 내용은 OpenCV의 글을 정리한 것입니다. (Reference1) Linearly Separable Data without Noise 먼저 가장 단순한 케이스를 봅시다. Noise가 전혀 없어 아주 깔끔하게 선형 구분이 가능한 데이터입니다. 맨 왼쪽은 전체 데이터, 가운데는 Training Data, 오른쪽은 Test Data입니다. 전체 데이터를 80:20 비율로 Training Data, Test Data로 나눈 겁니다. Noise가 없고 딱 봐도 두 데이터를 선형(직선)으로 구분할 수 있습니다. SVM Classfier로 위 데이터를 구분하는 Decision Bound..

머신러닝 2019. 7. 18. 00:09
Prev 1 Next

Blog is powered by kakao / Designed by Tistory

티스토리툴바