본문 바로가기

귀퉁이 서재

검색하기
귀퉁이 서재
프로필사진 Baek Kyun Shin

  • 전체 글 보기 (259)
    • 데이터 분석 (33)
    • 머신러닝 (22)
    • 컴퓨터 비전 (14)
    • OpenCV (33)
    • 자연어 처리 (NLP) (14)
    • 논문 리뷰 (7)
    • 캐글 (Kaggle) (11)
    • 블로그 프로젝트 (17)
    • 토이(Toy) 프로젝트 (5)
    • 책과 사유 (100)
    • 회고 (3)
Guestbook
Notice
  • 소개(About)
Recent Comments
Recent Posts
Archives
Link
  • Github
관리 메뉴
  • 글쓰기
  • 방명록
  • RSS
  • 관리

목록bagging (1)

귀퉁이 서재

머신러닝 - 11. 앙상블 학습 (Ensemble Learning): 배깅(Bagging)과 부스팅(Boosting)

앙상블(Ensemble) 앙상블은 조화 또는 통일을 의미합니다. 어떤 데이터의 값을 예측한다고 할 때, 하나의 모델을 활용합니다. 하지만 여러 개의 모델을 조화롭게 학습시켜 그 모델들의 예측 결과들을 이용한다면 더 정확한 예측값을 구할 수 있을 겁니다. 앙상블 학습은 여러 개의 결정 트리(Decision Tree)를 결합하여 하나의 결정 트리보다 더 좋은 성능을 내는 머신러닝 기법입니다. 앙상블 학습의 핵심은 여러 개의 약 분류기 (Weak Classifier)를 결합하여 강 분류기(Strong Classifier)를 만드는 것입니다. 그리하여 모델의 정확성이 향상됩니다. 앙상블 학습법에는 두 가지가 있습니다. 배깅(Bagging)과 부스팅(Boosting)입니다. 이를 이해하기 위해서는 부트스트랩(Bo..

머신러닝 2019. 9. 12. 21:49
Prev 1 Next

Blog is powered by kakao / Designed by Tistory

티스토리툴바